What the structural-functional connectome reveals about brain aging: The key role of the fronto-striatal-thalamic circuit and the rejuvenating impact of physical activity

Author:

Bonifazi P.,Erramuzpe A.,Diez I.,Gabilondo I.,Boisgontier M.P.,Pauwels L.,Stramaglia S.,Swinnen S.P.,Cortes J.M.

Abstract

AbstractPhysiological ageing affects brain structure and function impacting its morphology, connectivity and performance. However, at which extent brain-connectivity metrics reflect the age of an individual and whether treatments or lifestyle factors such as physical activity influence the age-connectivity match is still unclear. Here, we assessed the level of physical activity and collected brain images from healthy participants (N=155) ranging from 10 to 80 years to build functional (resting-state) and structural (tractography) connectivity matrices that were combined as connectivity descriptors. Connectivity descriptors were used to compute a maximum likelihood age estimator that was optimized by minimizing the mean absolute error. The connectivity-based estimated age, i.e. the brain-connectome age (BCA), was compared to the chronological age (ChA). Our results were threefold. First, we showed that ageing widely affects the structural-functional connectivity of multiple structures, such as the anterior part of the default mode network, basal ganglia, thalamus, insula, cingulum, hippocampus, parahippocampus, occipital cortex, fusiform, precuneus and temporal pole. Second, our analysis showed that the structure-function connectivity between basal ganglia and thalamus to orbitofrontal and frontal areas make a major contribution to age estimation. Third, we found that high levels of physical activity reduce BCA as compared to ChA, and vice versa, low levels increment it. In conclusion, the BCA model results highlight the impact of physical activity and the key role played by the connectivity between basal ganglia and thalamus to frontal areas on the process of healthy aging. Notably, the same methodology can be generally applied both to evaluate the impact of other factors and therapies on brain ageing, and to identify the structural-functional brain connectivity correlate of other biomarkers than ChA.

Publisher

Cold Spring Harbor Laboratory

Reference88 articles.

1. WHO | World report on ageing and health. WHO Available at: http://www.who.int/ageing/publications/world-report-2015/en/. (Accessed: 5th June 2017 )

2. Ageing, genes, environment and epigenetics: what twin studies tell us now, and in the future

3. Molecular and physiological manifestations and measurement of aging in humans

4. Common methods of biological age estimation;Clin Interv Aging,2017

5. Aging, frailty and age-related diseases

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3