DiscoSnp++: de novo detection of small variants from raw unassembled read set(s)

Author:

Peterlongo PierreORCID,Riou Chloé,Drezen Erwan,Lemaitre ClaireORCID

Abstract

AbstractMotivationNext Generation Sequencing (NGS) data provide an unprecedented access to life mechanisms. In particular, these data enable to detect polymorphisms such as SNPs and indels. As these polymorphisms represent a fundamental source of information in agronomy, environment or medicine, their detection in NGS data is now a routine task. The main methods for their prediction usually need a reference genome. However, non-model organisms and highly divergent genomes such as in cancer studies are extensively investigated.ResultsWe propose DiscoSnp++, in which we revisit the DiscoSnp algorithm. DiscoSnp++ is designed for detecting and ranking all kinds of SNPs and small indels from raw read set(s). It outputs files in fasta and VCF formats. In particular, predicted variants can be automatically localized afterwards on a reference genome if available. Its usage is extremely simple and its low resource requirements make it usable on common desktop computers. Results show that DiscoSnp++ performs better than state-of-the-art methods in terms of computational resources and in terms of results quality. An important novelty is the de novo detection of indels, for which we obtained 99% precision when calling indels on simulated human datasets and 90% recall on high confident indels from the Platinum dataset.LicenseGNU Affero general public licenseAvailabilityhttps://github.com/GATB/DiscoSnpContactpierre.peterlongo@inria.fr

Publisher

Cold Spring Harbor Laboratory

Reference23 articles.

1. 1000 genome phase 1 vcf file. ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/ALL.chr1.phase1_release_v3.20101123.snps_indels_svs.genotypes.vcf.gz.

2. An integrated map of genetic variation from 1,092 human genomes

3. Informed and automated k-mer size selection for genome assembly

4. Space-efficient and exact de Bruijn graph representation based on a Bloom filter

5. KMC 2: Fast and resource-frugal k-mer counting;Bioinformatics,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3