Abstract
Mutations that accumulate in the genome of replicating biological organisms can be used to infer their evolutionary history. In the case of measurably evolving organisms genomes often reveal their detailed spatiotemporal spread. Such phylodynamic analyses are particularly useful to understand the epidemiology of rapidly evolving viral pathogens. The number of genome sequences available for different pathogens, however, has increased dramatically over the last couple of years and traditional methods for phylodynamic analysis scale poorly with growing data sets. Here, we present TreeTime, a Python based framework for phylodynamic analysis using an approximate Maximum Likelihood approach. TreeTime can estimate ancestral states, infer evolution models, reroot trees to maximize temporal signals, estimate molecular clock phylogenies and population size histories. The run time of TreeTime scales linearly with data set size.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献