NMR Mapping of Disordered Segments from a Viral Scaffolding Protein Encapsulated in a 23 MDa Procapsid Complex

Author:

Whitehead Richard D.,Teschke Carolyn M.ORCID,Alexandrescu Andrei T.ORCID

Abstract

SummaryScaffolding proteins are requisite for the capsid shell assembly of many tailed dsDNA bacteriophages, some archaeal viruses, herpesviruses, and adenoviruses. Despite their importance, no high-resolution structural information is available for scaffolding proteins within capsids. Here we use the inherent size limit of NMR to identify mobile segments of the phage P22 scaffolding protein in solution and when incorporated into a ~23 MDa procapsid complex. Free scaffolding protein gives NMR signals from both the N and C-terminus. When scaffolding protein is incorporated into P22 procapsids, NMR signals from the C-terminal helix-turn-helix (HTH) domain disappear due to binding to the procapsid interior. Signals from the N-terminal domain persist, indicating this segment retains flexibility when bound to procapsids. The unstructured character of the N-terminus coupled with its high content of negative charges, is likely important for the dissociation and release of scaffolding protein, during the genome packaging step accompanying phage maturation.Graphical AbstractScaffolding protein (SP) nucleates the assembly of phage P22 coat proteins into an icosahedral capsid structure that envelops the viral genome. NMR spectra of free SP show signals from the N-terminus (red) and a helix-turn-helix domain at the C-terminus (blue). When SP is incorporated into empty phage P22 procapsids to form a 23 MDa complex, the subset of signals from the N-terminal 40 residues persist indicating this segment is disordered. The unfolded nature of the N-terminus coupled with its negatively charged character, is important for the functional requirement of SP to exit the capsid as it becomes packaged with its genome.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3