Antibacterial nucleoside-analog inhibitor of bacterial RNA polymerase: pseudouridimycin

Author:

Maffioli Sonia I.,Zhang Yu,Degen David,Carzaniga Thomas,Del Gatto Giancarlo,Serina Stefania,Monciardini Paolo,Mazzetti Carlo,Guglierame Paola,Candiani Gianpaolo,Chiriac Alina Iulia,Facchetti Giuseppe,Kaltofen Petra,Sahl Hans-Georg,Dehò Gianni,Donadio Stefano,Ebright Richard H.ORCID

Abstract

There is an urgent need for new antibacterial drugs effective against bacterial pathogens resistant to current drugs1–2. Nucleoside-analog inhibitors (NAIs) of viral nucleotide polymerases have had transformative impact in treatment of HIV3and HCV4. NAIs of bacterial RNA polymerase (RNAP) potentially could have major impact on treatment of bacterial infection, particularly because functional constraints on substitution of RNAP nucleoside triphosphate (NTP) binding sites4-5could limit resistance emergence4-5. Here we report the discovery, from microbial extract screening, of an NAI that inhibits bacterial RNAP and exhibits antibacterial activity against a broad spectrum of drug-sensitive and drug-resistant bacterial pathogens: pseudouridimycin (PUM). PUM is a novel microbial natural product consisting of a formamidinylated, N-hydroxylated Gly-Gln dipeptide conjugated to 6'-amino-pseudouridine. PUM potently and selectively inhibits bacterial RNAP in vitro, potently and selectively inhibits bacterial growth in culture, and potently clears infection in a mouse model ofStreptococcus pyogenesperitonitis. PUM inhibits RNAP through a binding site on RNAP (the "i+1" NTP binding site) and mechanism (competition with UTP for occupancy of the "i+1" NTP binding site) that differ from those of the RNAP inhibitor and current antibacterial drug rifampin (Rif). PUM exhibits additive antibacterial activity when co-administered with Rif, exhibits no cross-resistance with Rif, and exhibits a spontaneous resistance rate an order-of-magnitude lower than that of Rif. The results provide the first example of a selective NAI of bacterial RNAP, provide an advanced lead compound for antibacterial drug development, and provide structural information and synthetic routes that enable lead optimization for antibacterial drug development.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3