Author:
Kang Seong Su,Liu Xia,Ahn Eun Hee,Xiang Jie,Manfredsson Fredric P.,Yang Xifei,Luo Hongbo R.,Liles L. Cameron,Weinshenker David,Ye Keqiang
Abstract
AbstractAberrant Tau inclusions in the locus coeruleus (LC) are the earliest detectable Alzheimer’s disease (AD)-like neuropathology in the human brain; however, why LC neurons are selectively vulnerable to developing early Tau pathology and degenerating later in disease and whether the LC might seed the stereotypical spread of Tau pathology to the rest of the brain remain unclear. Here we show that 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL), which is produced exclusively in noradrenergic neurons by monoamine oxidase A (MAO-A) metabolism of norepinephrine (NE), activates asparagine endopeptidase (AEP) that cleaves Tau at residue N368 into aggregation- and propagation-prone forms, thereby leading to LC degeneration and the spread of Tau pathology. DOPEGAL triggers AEP-cleaved Tau aggregationin vitroand in intact cells, resulting in LC neurotoxicity and propagation of pathology to the forebrain. Thus, our findings reveal a novel molecular mechanism underlying the selective vulnerability of LC neurons in AD.
Publisher
Cold Spring Harbor Laboratory