Abstract
AbstractIt is often unavoidable to combine data from different sequencing centers or sequencing platforms when compiling datasets with a large number of individuals. However, the different data are likely to contain specific systematic errors that will appear as SNPs. Here, we devise a method to detect systematic errors in combined datasets. To measure quality differences between individual genomes, we study pairs of variants that reside on different chromosomes and co-occur in individuals. The abundance of these pairs of variants in different genomes is then used to detect systematic errors due to batch effects. Applying our method to the 1000 Genomes dataset, we find that coding regions are enriched for errors, where about 1% of the higher-frequency variants are predicted to be erroneous, whereas errors outside of coding regions are much rarer (<0.001%). As expected, predicted errors are less often found than other variants in a dataset that was generated with a different sequencing technology, indicating that many of the candidates are indeed errors. However, predicted 1000 Genomes errors are also found in other large datasets; our observation is thus not specific to the 1000 Genomes dataset. Our results show that batch effects can be turned into a virtue by using the resulting variation in large scale datasets to detect systematic errors.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献