Disease-associated mosaic variation in clinical exome sequencing: a two-year pediatric tertiary care experience

Author:

Miller Cecelia R.,Lee Kristy,Pfau Ruthann B.,Reshmi Shalini C.,Corsmeier Donald J.,Hashimoto Sayaka,Dave-Wala Ashita,Jayaraman Vijayakumar,Koboldt Daniel,Matthews Theodora,Mouhlas Danielle,Stein Maggie,McKinney Aimee,Grossman Tom,Kelly Benjamin J.,White PeterORCID,Magrini Vincent,Wilson Richard K.,Mardis Elaine R.,Cottrell Catherine E.

Abstract

Exome sequencing (ES) has become an important tool in pediatric genomic medicine, improving identification of disease-associated variation due to assay breadth. Depth is also afforded by ES, enabling detection of lower-frequency mosaic variation compared to Sanger sequencing in the studied tissue, thus enhancing diagnostic yield. Within a pediatric tertiary-care hospital, we report two years of clinical ES data from probands evaluated for genetic disease to assess diagnostic yield, characteristics of causal variants, and prevalence of mosaicism among disease-causing variants. Exome-derived, phenotype-driven variant data from 357 probands was analyzed concurrent with parental ES data, when available. Blood was the source of nucleic acid. Sequence read alignments were manually reviewed for all assessed variants. Sanger sequencing was used for suspected de novo or mosaic variation. Clinical provider notes were reviewed to determine concordance between laboratory-reported data and the ordering provider's interpretation of variant-associated disease causality. Laboratory-derived diagnostic yield and provider-substantiated diagnoses had 91.4% concordance. The cohort returned 117 provider-substantiated diagnoses among 115 probands for a diagnostic yield of 32.2%. De novo variants represented 64.9% of disease-associated variation within trio analyses. Among the 115 probands, five harbored disease-associated somatic mosaic variation. Two additional probands were observed to inherit a disease-associated variant from an unaffected mosaic parent. Among inheritance patterns, de novo variation was the most frequent disease etiology. Somatic mosaicism is increasingly recognized as a significant contributor to genetic disease, particularly with increased sequence depth attainable from ES. This report highlights the potential and importance of detecting mosaicism in ES.

Publisher

Cold Spring Harbor Laboratory

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3