Clinical IRAK4 deficiency caused by homozygosity for the novel IRAK4 (c.1049delG, p.Gly350Glufs*15) variant

Author:

Jia Alicia,James Elliot,Lu Henry Y.,Sharma Mehul,Modi Bhavi P.,Biggs Catherine M.,Hildebrand Kyla J.,Chomyn Alanna,Erdle Stephanie,Kular Hasandeep,Turvey Stuart E.ORCID

Abstract

The innate immune system allows for rapid recognition of pathogens. Toll-like receptor (TLR) signaling is a key aspect of the innate immune response, and interleukin-1 receptor-associated kinase 4 (IRAK4) plays a vital role in the TLR signaling cascade. Each TLR recognizes a distinct set of pathogen-associated molecular patterns (PAMPs) that encompass conserved microbial components such as lipopolysaccharides and flagellin. Upon binding of PAMPs and TLR activation, TLR intracellular domains initiate the oligomerization of the myeloid differentiation primary response 88 (MyD88), IRAK1, IRAK2, and IRAK4 signaling platform known as the Myddosome complex while also triggering the Toll/IL-1R domain-containing adaptor-inducing IFN-β (TRIF)-dependent pathway. The Myddosome complex initiates signal transduction pathways enabling the activation of NF-κB and mitogen-activated protein kinase (MAPK) transcription factors and the subsequent production of inflammatory cytokines. Human IRAK4 deficiency is an autosomal recessive inborn error of immunity that classically presents with blunted or delayed inflammatory response to infection and susceptibility to a narrow spectrum of pyogenic bacteria, particularly Streptococcus pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa. We describe a case of IRAK4 deficiency in an 11-mo-old boy with concurrent S. pneumoniae bacteremia and S. aureus cervical lymphadenitis with a blunted inflammatory response to invasive infection. Although initial clinical immune profiling was unremarkable, a high degree of suspicion for an innate immune defect prompted genetic sequencing. Genetic testing revealed a novel variant in the IRAK4 gene (c.1049delG, p.(Gly350Glufs*15)) predicted to be likely pathogenic. Functional testing showed a loss of IRAK4 protein expression and abolished TLR signaling, confirming the pathogenicity of this novel IRAK4 variant.

Publisher

Cold Spring Harbor Laboratory

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3