Abstract
The Delta-proteobacterium,Myxococcus xanthus, has been used as a model for bacterial motility and to provide insights of bacterial swarming behaviours. Fluorescence microscopy techniques have shown that various mechanisms are involved in gliding motility, but these have almost entirely been limited to 2D studies and there is currently no understanding of gliding motility in a 3D context. We present here the first use of confocal interference reflection microscopy (IRM) to study gliding bacteria, and we reveal aperiodic oscillatory behaviour with changes in the position of the basal membrane relative to the coverglass on the order of 90 nmin vitro. Firstly, we use a model plano-convex lens specimen to show how topological information can be obtained from the wavelength-dependent interference pattern in IRM. We then use IRM to observe glidingM. xanthusand show that cells undergo previously unobserved changes in their height as they glide. We compare the wild-type with mutants of reduced motility, which also exhibit the same changes in adhesion profile during gliding. We find that the general gliding behaviour is independent of the proton motive force-generating complex, AglRQS, and suggest that the novel behaviour we present here may be a result of recoil and force transmission along the length of the cell body following firing of the Type IV pili.
Publisher
Cold Spring Harbor Laboratory