Maintaining their genetic distance; limited gene flow between widely hybridising species of Geum with contrasting mating systems

Author:

Jordan Crispin Y.,Lohse Konrad,Turner Frances,Thomson Marian,Gharbi Karim,Ennos Richard A.

Abstract

AbstractMating system transition from outcrossing to selfing frequently gives rise to sister lineages with contrasting outcrossing rates. The evolutionary fate of such lineages depends on the extent to which they exchange genes. We measured gene flow between outcrossing Geum rivale and selfing G. urbanum, two sister species derived by mating system transition, which frequently hybridise. A draft genome was generated for G. urbanum and used to develop dd-RAD data scorable in both species. Coalescent analysis of RAD data from allopatric populations indicated that the two species diverged 2-3 Mya, and that long term gene flow between them has been very low (M=0.04). G. rivale showed greater genetic diversity in sympatry than allopatry, but genetic divergence between species was no lower in sympatry than allopatry, providing little evidence for recent introgression. Clustering of genotypes revealed that, apart from four early generation hybrids, individuals in sympatric populations fell into two genetically distinct groups with <1% admixture that corresponded exactly to their morphological species classification. Although our data suggest limited gene flow, we observed joint segregation of two putatively introgressed SNPs in G. urbanum populations that was associated with significant morphological variation; this provides tentative evidence for rare introduction of novel genetic diversity by interspecific gene flow. Our results indicate that despite frequent hybridisation, genetic exchange between G. rivale and G. urbanum has been very limited throughout their evolutionary history.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The redundancy effect under morphogenetic and environmental fluctuations. The case of the Dianthus pungens group;Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology;2021-01-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3