Humans parsimoniously represent auditory sequences by pruning and completing the underlying network structure

Author:

Benjamin LucasORCID,Fló AnaORCID,Roumi Fosca Al,Dehaene-Lambertz GhislaineORCID

Abstract

AbstractSuccessive auditory inputs are rarely independent, their relationships ranging from local transitions between elements to hierarchical and nested representations. In many situations, humans retrieve these dependencies even from limited datasets. However, this learning at multiple scale levels is poorly understood. Here We used the formalism proposed by network science to study the representation of local and higher order structures, and their interaction, in auditory sequences. We show that human adults exhibited biases in their perception of local transitions between elements, which made them sensitive to high-order structures such as network communities. This behavior is consistent with the creation of a parsimonious simplified model from the evidence they receive, achieved by pruning and completing relationships between network elements. This observation suggests that the brain does not rely on exact memories but compressed representations of the world. Moreover, this bias can be analytically modeled by a memory/efficiency trade-off. This model correctly account for previous findings, including local transition probabilities as well as high order network structures, unifying statistical learning across scales. We finally propose putative brain implementations of such bias.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3