Single-molecule and super-resolved imaging deciphers membrane behaviour of onco-immunogenic CCR5

Author:

Hunter Patrick,Payne-Dwyer Alex L.ORCID,Shaw MichaelORCID,Signoret Nathalie,Leake Mark C.ORCID

Abstract

SummaryThe ability of tumors to establish a pro-tumorigenic microenvironment is becoming an important point of investigation in the search for new therapeutics. Tumors form microenvironments in part by the ‘education’ of immune cells attracted via chemotactic axes such as that of CCR5-CCL5. Further, CCR5 upregulation by cancer cells, coupled with its association with pro-tumorigenic features such as drug-resistance and metastasis, has suggested CCR5 as a target for therapeutic inhibition. However, with several conformational “pools” being reported, phenotypic investigations must be capable of unveiling heterogeneity. Addressing this challenge, we performed structured illumination (SIM) and Partially TIRF coupled HILO (PaTCH) microscopy for super-resolution imaging and single-molecule imaging of CCR5 in fixed cells. Determining the positions of super-resolved CCR5 assemblies revealed a non-random spatial orientation. Further, intensity-tracking of assemblies revealed a distribution of molecular stoichiometries indicative of dimeric sub-units independent of CCL5 perturbation. These biophysical methods can provide important insights into the structure and function of onco-immunogenic receptors and a plethora of other biomolecules.HighlightsWe use SIM and novel PaTCH microscopy for precise bioimaging and single-molecule tracking of receptor protein CCR5 in model cell lineBy tracking the position of CCR5 assemblies we conclude that they are clustered in the plasma membrane beyond a level expected from a random distributionWe use these high-precision data to determine molecular stoichiometries of CCR5 assemblies

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3