Analysis of CheW-like domains provides insights into organization of prokaryotic chemotaxis systems

Author:

Vass Luke R.,Bourret Robert B.ORCID,Foster Clay A.

Abstract

ABSTRACTThe ability to control locomotion in a dynamic environment provides a competitive advantage for microorganisms, thus driving the evolution of sophisticated regulatory systems. Nineteen known categories of chemotaxis systems control motility mediated by flagella or Type IV pili, plus other cellular functions. A key feature that distinguishes chemotaxis systems from generic two-component regulatory systems is separation of receptor and kinase functions into distinct proteins, linked by CheW scaffold proteins. This arrangement allows for formation of varied arrays with remarkable signaling properties. We recently analyzed sequences of CheW-like domains found in CheA kinases and CheW and CheV scaffold proteins. Sixteen Architectures of CheA, CheW, and CheV proteins contain ∼94% of all CheW-like domains and form six Classes with likely functional specializations.We surveyed chemotaxis system categories and proteins containing CheW-like domains in ∼1900 prokaryotic species, the most comprehensive analysis to date, revealing new insights. Co-occurrence analyses suggested that many chemotaxis systems occur in non-random combinations within species, implying synergy or antagonism. Furthermore, many Architectures of proteins containing CheW-like domains occurred predominantly with specific categories of chemotaxis systems, suggesting specialized functional interactions. We propose Class 1 (∼80%) and Class 2 (∼20%) CheW proteins exhibit preferences for distinct chemoreceptor structures. Furthermore, rare (∼1%) Class 6 CheW proteins frequently co-occurred with methyl-accepting coiled coil (MAC) proteins, which contain both receptor and kinase functions and so do not require connection via a CheW scaffold but may benefit from arrays. Lastly, rare multi-domain CheW proteins may interact with different receptors than single domain CheW proteins.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3