Modelling spatially autocorrelated detection probabilities in spatial capture-recapture using random effects

Author:

Dey SoumenORCID,Moqanaki Ehsan M.ORCID,Milleret CyrilORCID,Dupont PierreORCID,Tourani MahdiehORCID,Bischof RichardORCID

Abstract

AbstractSpatial capture-recapture (SCR) models are now widely used for estimating density from repeated individual spatial encounters. SCR accounts for the inherent spatial autocorrelation in individual detections by modelling detection probabilities as a function of distance between the detectors and individual activity centres. However, additional spatial heterogeneity in detection probability may still creep in due to environmental or sampling characteristics. if unaccounted for, such variation can lead to pronounced bias in population size estimates.Using simulations, we describe and test three Bayesian SCR models that use generalized linear mixed models (GLMM) to account for latent heterogeneity in baseline detection probability across detectors using: independent random effects (RE), spatially autocorrelated random effects (SARE), and a twogroup finite mixture model (FM).Overall, SARE provided the least biased population size estimates (median RB: -9 – 6%). When spatial autocorrelation was high, SARE also performed best at predicting the spatial pattern of heterogeneity in detection probability. At intermediate levels of autocorrelation, spatially-explicit estimates of detection probability obtained with FM where more accurate than those generated by SARE and RE. In cases where the number of detections per detector is realistically low (at most 1), all GLMMs considered here may require dimension reduction of the random effects by pooling baseline detection probability parameters across neighboring detectors (“aggregation”) to avoid over-parameterization.The added complexity and computational overhead associated with SCR-GLMMs may only be justified in extreme cases of spatial heterogeneity. However, even in less extreme cases, detecting and estimating spatially heterogeneous detection probability may assist in planning or adjusting monitoring schemes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3