A Comparative Effectiveness Study on Opioid Use Disorder Prediction Using Artificial Intelligence and Existing Risk Models

Author:

Fouladvand Sajjad,Talbert Jeffery,Dwoskin Linda P.,Bush Heather,Meadows Amy L.,Peterson Lars E.,Mishra Yash R.,Roggenkamp Steven K.,Wang Fei,Kavuluru Ramakanth,Chen Jin

Abstract

ABSTRACTObjectiveTo compare the effectiveness of multiple artificial intelligence (AI) models with unweighted Opioid Risk Tool (ORT) in opioid use disorder (OUD) prediction.Materials and MethodsThis is a retrospective cohort study of deidentified claims data from 2009 to 2020. The study cohort includes 474,208 patients. Cases are prescription opioid users with at least one diagnosis of OUD or at least one prescription for buprenorphine or methadone. Controls are prescription opioid users with no OUD diagnoses or buprenorphine or methadone prescriptions. Cases and controls are matched based on age, sex, opioid use duration and longitudinal data availability. OUD prediction performance of logistic regression (LR), random forest (RF), XGBoost, long short-term memory (LSTM), transformer, our proposed AI model for OUD prediction (MUPOD), and the unweighted ORT were assessed using accuracy, precision, recall, F1-score and AUC.ResultsData includes 474,208 patients; 269,748 were females with an average age of 56.78 years. On 100 randomly selected test sets including 47,396 patients, MUPOD can predict OUD more efficiently (AUC=0.742±0.021) compared to LR (AUC=0.651±0.025), RF (AUC=0.679±0.026), XGBoost (AUC=0.690±0.027), LSTM (AUC=0.706±0.026), transformer (AUC=0.725±0.024) as well as the unweighted ORT model (AUC=0.559±0.025).DiscussionOUD is a leading cause of death in the United States. AI can be harnessed with available claims data to produce automated OUD prediction tools. We compared the effectiveness of AI models for OUD prediction and showed that AI can predict OUD more effectively than the unweighted ORT tool.ConclusionEmbedding AI algorithms into clinical care may assist clinicians in risk stratification and management of patients receiving opioid therapy.

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

1. Reframing the Opioid Epidemic as a National Emergency

2. Modeling Health Benefits and Harms of Public Policy Responses to the US Opioid Epidemic

3. Substance Abuse and Mental Health Services Administration. Key Substance Use and Mental Health Indicators in the United States: Results from the 2020 National Survey on Drug Use and Health. Substance Abuse and Mental Health Services Administration; 2021. Accessed December 15, 2021. https://www.samhsa.gov/data/sites/default/files/reports/rpt35325/NSDUHFFRPDFWHTMLFiles2020/2020NSDUHFFR1PDFW102121.pdf

4. Confronting the Stigma of Opioid Use Disorder—and Its Treatment

5. Wu LT , Zhu H , Swartz MS . Treatment utilization among persons with opioid use disorder in the United States. Drug Alcohol Depend. 2016;169:117-127.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3