Nucleoli and the nucleoli-centromere association are dynamic during normal development and in cancer

Author:

Rodrigues Aaron,MacQuarrie Kyle L.,Freeman Emma,Leano Kurt,Willis Alexander B,Xu Zhaofa,Alvarez Angel A,Kosak Steven,Ma Yongchao,Perez White Bethany E,Foltz Daniel R,Huang Sui

Abstract

AbstractCentromeres are known to cluster around nucleoli in drosophila and mammalian cells. However, the functional significance of nucleoli-centromere interaction remains underexplored. We hypothesize that if this conserved interaction is functionally important, it should be dynamic under different physiological and pathological conditions. We examined the nucleolar structure and centromeres at various differentiation stages using cell culture models. The results show dynamic changes of nucleolar number, area, and nucleoli-centromere interactions at differentiation stages and in cancer cells. Embryonic stem cells usually have a single large nucleolus, which associates with a high percentage of centromeres. As cells differentiate into intermediate states, the nucleolar number increases and the association with centromeres decreases. In terminally differentiated cells, including myotubes, neurons and keratinocytes, the number of nucleoli and their association with centromeres are at the lowest. Cancer cells demonstrate the pattern of nucleoli number and nucleoli-centromere association that is akin to proliferative less differentiated cell types, suggesting that nucleolar reorganization and changes in nucleoli-centromere interactions may help facilitate malignant transformation. This idea is supported in a case of pediatric rhabdomyosarcoma, in which induced differentiation inhibits cell proliferation and reduces nucleolar number and centromere association. These findings suggest active roles of nucleolar structure in centromere function and genome organization critical for cellular function in both normal development and cancer.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3