Hemodynamic transient and functional connectivity follow structural connectivity and cell type over the brain hierarchy

Author:

Chuang Kai-HsiangORCID,Huang Helena H,Gerdekoohi Shabnam Khorasani,Li Zengmin,Athwal Dilsher

Abstract

AbstractThe neural circuit of the brain is organized as a hierarchy of functional units with wide-ranging connections that support information flow and functional connectivity. Studies using magnetic resonance imaging (MRI) indicate a moderate coupling between structural and functional connectivity at the system level. However, how do connections of different directions (feedforward and feedback) and regions with different excitatory and inhibitory (E/I) neurons shape the hemodynamic activity and functional connectivity over the hierarchy are unknown. Here, we used functional MRI to detect optogenetic-evoked and resting-state activities over a somatosensory pathway in the mouse brain in relation to axonal projection and E/I distribution. Using a highly sensitive ultrafast imaging, we identified extensive activation in regions up to the third order of axonal projections following optogenetic excitation of the ventral posteriomedial nucleus of the thalamus. The evoked response and functional connectivity correlated with feedforward projections more than feedback projections and weakened with the hierarchy. The hemodynamic response exhibited regional and hierarchical differences, with slower and more variable responses in high-order areas and bipolar response predominantly in the contralateral cortex. Importantly, the positive and negative parts of the hemodynamic response correlated with E/I neuronal densities, respectively. Furthermore, resting-state functional connectivity was more associated with E/I distribution whereas stimulus-evoked effective connectivity followed structural wiring. These findings indicate that the structure-function relationship is projection-, cell-type- and hierarchy-dependent. Hemodynamic transients could reflect E/I activity and the increased complexity of hierarchical processing.Significance StatementThe neural circuit of the brain is organized as a hierarchy of functional units with complicated feedforward and feedback connections to selectively enhance (excitation) or suppress (inhibit) information from massive sensory inputs. How brain activity is shaped by the structural wiring and excitatory and inhibitory neurons is still unclear. We characterize how brain-wide hemodynamic responses reflect these structural constituents over the hierarchy of a somatosensory pathway. We find that functional activation and connectivity correlate with feedforward connection strengths and neuronal distributions. This association subsides with hierarchy due to slower and more variable hemodynamic responses, reflecting increased complexity of processing and neuronal compositions in high-order areas. Our findings indicate that hemodynamics follow the hierarchy of structural wiring and neuronal distribution.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3