An atlas of epithelial cell states and plasticity in lung adenocarcinoma

Author:

Han Guangchun,Sinjab Ansam,Treekitkarnmongkol Warapen,Lu Wei,Serrano Alejandra G.,Hernandez Sharia D.,Rahal Zahraa,Cao Xuanye,Dai Enyu,Gomez-Bolanos Lorena I.,Parra Edwin R.,Negrao Marcelo Vailati,Cascone Tina,Sepesi Boris,Moghaddam Seyed Javad,Chen Jichao,Dubinett Steven M.,Scheet Paul,Fujimoto Junya,Solis Luisa M.,Wistuba Ignacio I.,Stevenson Christopher S.,Spira Avrum E.,Wang Linghua,Kadara Humam

Abstract

AbstractUnderstanding cellular processes underlying early lung adenocarcinoma (LUAD) development is needed to devise intervention strategies1. Here, we studied 246,102 single epithelial cells from 16 early-stage LUADs and 47 matched normal lung samples. Epithelial cells comprised diverse normal alveolar and airway lineages as well as cancer cell populations. Diversity among cancer cells was strongly linked to LUAD patient-specific oncogenic drivers. KRAS-mutant cancer cells were unique in their transcriptional features, strikingly reduced differentiation, low levels of DNA copy number changes, and increased variability amongst the cells themselves. The local niche of LUADs, relative to that of normal lungs, was enriched with intermediary cells in lung alveolar differentiation with potential to transition to KRAS-mutant cancer cells. A subset of alveolar intermediate cells with elevated KRT8 expression (KRT8+ alveolar cells; KACs) showed increased plasticity, and their gene expression profiles were enriched in lung precancer and LUAD and signified poor survival. Murine KACs were evident in lungs of tobacco carcinogen-exposed mice that develop KRAS-mutant LUADs but not in the saline-treated control group. While murine KACs emerged prior to tumor onset, they persisted for months after carcinogen cessation, acquired driver Kras mutations and, like their human counterparts, were poorly differentiated and harbored KRAS-specific transcriptional programs. This study provides new insights into early LUAD development and identifies potential targets for treatment.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3