Synovial fibroblasts assume distinct functional identities and secrete R-spondin 2 to drive osteoarthritis

Author:

Knights Alexander J.ORCID,Farrell Easton C.,Ellis Olivia M.,Lammlin Lindsey,Junginger Lucas M.,Rzeczycki Phillip M.ORCID,Bergman Rachel F.ORCID,Pervez Rida,Cruz Monique,Samani Alexa A.,Wu Chia-LungORCID,Hankenson Kurt D.ORCID,Maerz Tristan

Abstract

ABSTRACTObjectivesSynovium is acutely affected following joint trauma and contributes to post-traumatic osteoarthritis (PTOA) progression. Little is known about discrete cell types and molecular mechanisms in PTOA synovium. We aimed to describe synovial cell populations and their dynamics in PTOA, with a focus on fibroblasts. We also sought to define mechanisms of synovial Wnt/β-catenin signaling, given its emerging importance in arthritis.MethodsWe subjected mice to non-invasive anterior cruciate ligament rupture as a model of human joint injury. We performed single-cell RNA-sequencing to assess synovial cell populations, subjected Wnt-GFP reporter mice to joint injury to study Wnt-active cells, and performed intra-articular injections of the Wnt agonist R-spondin 2 (Rspo2) to assess whether gain-of-function induced pathologies characteristic of PTOA. Lastly, we used cultured fibroblasts, macrophages, and chondrocytes to study how Rspo2 orchestrates crosstalk between joint cell types.ResultsWe uncovered seven distinct functional subsets of synovial fibroblasts in healthy and injured synovium, and defined their temporal dynamics in early and established PTOA. Wnt/β-catenin signaling was overactive in PTOA synovium, and Rspo2 was strongly induced after injury and secreted exclusively by Prg4hi lining fibroblasts. Trajectory analyses predicted that Prg4hi lining fibroblasts arise from a pool of Dpp4+ mesenchymal progenitors in synovium, with SOX5 identified as a potential regulator of this emergence. We also showed that Rspo2 orchestrated pathological crosstalk between synovial fibroblasts, macrophages, and chondrocytes.ConclusionsSynovial fibroblasts assume distinct functional identities during PTOA, and Prg4hi lining fibroblasts secrete the Wnt agonist Rspo2 to drive pathological crosstalk in the joint after injury.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3