In-VitroEfficacy of Targeted FODMAP Enzymatic Digestion (FODZYME®) in a High-Fidelity Simulated Gastrointestinal Environment

Author:

Ochoa Kenny Castro,Samant ShalakaORCID,Liu Anjie,Duysburgh Cindy,Marzorati MassimoORCID,Singh Prashant,Hachuel David,Chey William,Wallach ThomasORCID

Abstract

AbstractIntroductionIrritable bowel syndrome (IBS) is characterized by abdominal pain and changes in bowel habits. FODMAPs are poorly absorbed short-chain carbohydrates that may drive commensal microbial gas production, promoting abdominal pain in IBS. Low-FODMAP diet can result in symptomatic improvement in 50-80% of IBS patients. However, this diet is not meant to be sustained long term, with concern for downstream nutrition and microbial issues. In this study, we evaluate the function of a targeted FODMAP enzymatic digestion food supplement FODZYME® containing an fructan hydrolase enzyme in a simulated gastrointestinal environment.MethodsUsing SHIME®, a multi-compartment simulator of the human gut, FODZYME® dose finding assay in modeled gastrointestinal conditions assessed enzymatic ability to hydrolyze 3 g of inulin. Full intestinal modeling assessing digestion of inulin, absorption of fructose, gas production and other measures of commensal microbial behavior was completed using 1.125 g of FODZYME®.ResultsAfter 30 minutes, 90% of the inulin was converted to fructose by 1.125 g of FODZYME®.Doubling dosage showed no significant improvement in conversion, whereas a half dose decreased performance to 77.2%. 70% of released fructose was absorbed during simulated small intestinal transit, with a corresponding decrease in microbial gas production, and a small decrease in butyrate and short chain fatty acid (SCFA) production.DiscussionFODZYME® specifically breaks down inulin in representative gastrointestinal conditions, resulting in decreased gas production while substantially preserving SCFA and butyrate production in the model colon. Our results suggest dietary supplementation with FODZYME® would decrease intestinal FODMAP burden and gas production.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3