Precision motor timing via scalar input fluctuations

Author:

Pang RichORCID,Duffy Alison,Bell David,Torok Zsofia,Fairhall Adrienne

Abstract

Complex motor skills like playing piano require precise timing over long periods, without errors accumulating between subprocesses like the left and right hand movements. While biological models can produce motor-like sequences, how the brain quenches timing errors is not well understood. Motivated by songbirds, where the left and right brain nuclei governing song sequences do not connect but may receive low-dimensional thalamic input, we present a model where timing errors in an autonomous sequence generator are continually corrected by one-dimensional input fluctuations. We show in a spiking neural network model how such input can rapidly correct temporal offsets in a propagating spike pulse, recapitulating the precise timing seen in songbird brains. In a reduced, more general model, we show that such timing correction emerges when the spatial profile of the input over the sequence sufficiently reflects its temporal fluctuations, yielding time-locking attractors that slow advanced sequences and hasten lagging ones, up to the input timescale. Unlike models without fluctuating input, our model predicts anti-correlated durations of adjacent segments of the output sequence, which we verify in recorded zebra finch songs. This work provides a bioplausible picture of how temporal precision could arise in extended motor sequences and generally how low-dimensional input could continuously coordinate time-varying output signals.SignificanceComplex motor skills like playing piano require precision timing over long periods, often among multiple components like left and right muscle groups. Although brain-like network models can produce motor-like outputs, timing regulation is not well understood. We introduce a model, inspired by songbird brains, where imprecise timing in a cortical-like system is corrected by a single thalamic input regulating the sequential propagation, or tempo, of cortical activity. This model illuminates a relation between the input’s spatial structure and temporal variation that lets lagging activity hasten and advanced activity slow, which makes a prediction about output timing that we verify in real birdsong. This work reveals a simple, neuroplausible mechanism that may play a role in precision cortical or motor timing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3