A social media-based framework for quantifying temporal changes to wildlife viewing intensity: Case study of sea turtles before and during COVID-19

Author:

Papafitsoros KostasORCID,Adam LukášORCID,Schofield GailORCID

Abstract

AbstractDocumenting how human pressure on wildlife changes over time is important to minimise potential adverse effects through implementing appropriate management and policy actions; however, obtaining objective measures of these changes and their potential impacts is often logistically challenging, particularly in the natural environment. Here, we developed a modular stochastic model that infers the ratio of actual viewing pressure on wildlife in consecutive time periods (years) using social media, as this medium is widespread and easily accessible. Pressure was calculated from the number of times individual animals appeared in social media in pre-defined time windows, accounting for time-dependent variables that influence them (e.g. number of people with access to social media). Formulas for the confidence intervals of viewing pressure ratios were rigorously developed and validated, and corresponding uncertainty was quantified. We applied the developed framework to calculate changes to wildlife viewing pressure on loggerhead sea turtles (Caretta caretta) at Zakynthos island (Greece) before and during the COVID-19 pandemic (2019-2021) based on 2646 social media entries. Our model ensured temporal comparability across years of social media data grouped in time window sizes, by correcting for the interannual increase of social media use. Optimal sizes for these windows were delineated, reducing uncertainty while maintaining high time-scale resolution. The optimal time window was around 7-days during the peak tourist season when more data were available in all three years, and >15 days during the low season. In contrast, raw social media data exhibited clear bias when quantifying changes to viewing pressure, with unknown uncertainty. The framework developed here allows widely-available social media data to be used objectively when quantifying temporal changes to wildlife viewing pressure. Its modularity allowed viewing pressure to be quantified for all data combined, or subsets of data (different groups, situations or locations), and could be applied to any site supporting wildlife exposed to tourism.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3