High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer

Author:

Salcher Stefan,Sturm GregorORCID,Horvath Lena,Untergasser Gerold,Fotakis Georgios,Panizzolo Elisa,Martowicz Agnieszka,Pall Georg,Gamerith Gabriele,Sykora Martina,Augustin Florian,Schmitz Katja,Finotello Francesca,Rieder Dietmar,Sopper Sieghart,Wolf Dominik,Pircher Andreas,Trajanoski Zlatko

Abstract

SUMMARYNon-small cell lung cancer (NSCLC) is characterized by molecular heterogeneity with diverse immune cell infiltration patterns, which has been linked to both, therapy sensitivity and resistance. However, full understanding of how immune cell phenotypes vary across different patient and tumor subgroups is lacking. Here, we dissect the NSCLC tumor microenvironment at high resolution by integrating 1,212,463 single-cells from 538 samples and 309 patients across 29 datasets, including our own dataset capturing cells with low mRNA content. Based on the cellular composition we stratified patients into immune deserted, B cell, T cell, and myeloid cell subtypes. Using bulk samples with genomic and clinical information, we identified specific cellular components associated with tumor histology and genotypes. Analysis of cells with low mRNA content uncovered distinct subpopulations of tissue-resident neutrophils (TRNs) that acquire new functional properties in the tissue microenvironment, providing evidence for the plasticity of TRNs. TRN-derived gene signature was associated with anti-PD-L1 treatment failure in a large NSCLC cohort.In briefSalcher, Sturm, Horvath et al. integrate single-cell datasets to generate the largest transcriptome atlas in NSCLC, refining patient stratification based on tumor immune phenotypes, and revealing associations of histological subtypes and genotypes with specific cellular composition patterns.Coverage of cells with low mRNA content by single-cell sequencing identifies distinct tissue-resident neutrophil subpopulations, which acquire new properties within the tumor microenvironment. Gene signature from tissue-resident neutrophils is associated with immune checkpoint inhibitor treatment failure. The integrated atlas is publicly available online (https://luca.icbi.at), allowing the dissection of tumor-immune cell interactions in NSCLC.HighlightsHigh-resolution single-cell atlas of the tumor microenvironment (TME) in NSCLC.Histological tumor subtypes and driver genes imprint specific cellular TME patterns.scRNA-seq of cells with low transcript count identifies distinct tissue-resident neutrophil (TRN) subpopulations and non-canonical functional properties in the TME niche.TRN gene signature identifies patients who are refractory to treatment with PD-L1 inhibitors.Abstract Figure

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3