Developmental timing of programmed DNA elimination in Paramecium tetraurelia recapitulates germline transposon evolutionary dynamics

Author:

Zangarelli CoralieORCID,Arnaiz OlivierORCID,Bourge MickaëlORCID,Gorrichon KevinORCID,Jaszczyszyn YanORCID,Mathy NathalieORCID,Escoriza Loïc,Bétermier MireilleORCID,Régnier VincianeORCID

Abstract

AbstractWith its nuclear dualism, the ciliate Paramecium constitutes an original model to study how host genomes cope with transposable elements (TEs). P. tetraurelia harbors two germline micronuclei (MIC) and a polyploid somatic macronucleus (MAC) that develops from the MIC at each sexual cycle. Throughout evolution, the MIC genome has been continuously colonized by TEs and related sequences that are removed from the somatic genome during MAC development. Whereas TE elimination is generally imprecise, excision of ∼45,000 TE-derived Internal Eliminated Sequences (IESs) is precise, allowing for functional gene assembly. Programmed DNA elimination is concomitant with genome amplification. It is guided by non-coding RNAs and repressive chromatin marks. A subset of IESs is excised independently of this epigenetic control, raising the question of how IESs are targeted for elimination. To gain insight into the determinants of IES excision, we established the developmental timing of DNA elimination genome-wide by combining fluorescence-assisted nuclear sorting with next-generation sequencing. Essentially all IESs are excised within only one endoreplication round (32C to 64C), while TEs are eliminated at a later stage. We show that time, rather than replication, controls the progression of DNA elimination. We defined four IES classes according to excision timing. The earliest excised IESs tend to be independent of epigenetic factors, display strong sequence signals at their ends and originate from the most ancient integration events. We conclude that old IESs have been optimized during evolution for early and accurate excision, by acquiring stronger sequence determinants and escaping epigenetic control.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3