A generalizable framework to comprehensively predict epigenome, chromatin organization, and transcriptome

Author:

Zhang Zhenhao,Feng Fan,Qiu Yiyang,Liu Jie

Abstract

AbstractMany deep learning approaches have been proposed to predict epigenetic profiles, chromatin organization, and transcription activity. While these approaches achieve satisfactory performance in predicting one modality from another, the learned representations are not generalizable across predictive tasks or across cell types. In this paper, we propose a deep learning approach named EPCOT which employs a pre-training and fine-tuning framework, and comprehensively predicts epigenome, chromatin organization, transcriptome, and enhancer activity in one framework. EPCOT is the first framework proposed to predict all of these genomic modalities and performs well in individual modality prediction, which is also generalizable to new cell and tissue types. EPCOT also maps from DNA sequence and chromatin accessibility profiles to generic representations which are generalizable across different modalities. Interpreting EPCOT model also provides biological insights including mapping between different genomic modalities, identifying TF sequence binding patterns, and analyzing cell-type specific TF impacts on enhancer activity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3