Single particle tracking with compressive sensing using progressive refinement method on sparse recovery (spt-PRIS)

Author:

Yi Xiyu,Shrestha Rebika,McDonald Torin,Chen De,Bhatia Harsh,Pascucci Valerio,Turbyville Thomas,Bremer Peer-Timo

Abstract

AbstractSingle particle tracking (SPT) is an indispensable tool for scientific studies. However, SPT for datasets with a high density of particles is still challenging, especially for the study of particle interactions where the point spread functions (PSFs) are overlapping. In this study, we present spt-PRIS, a new SPT solution where we apply compressive sensing to SPT by integrating the progressive refinement method on sparse recovery (PRIS) into the framework of the state-of-the-art SPT algorithm (uTrack). We systematically characterized and validated spt-PRIS performance using simulations, applied it to the experimental data of membrane-bound KRAS4b proteins in either 2-lipid or 8-lipid membrane supported lipid bilayers (SLB), and compared the results to the conventional method (uTrack). Our results show that spt-PRIS is effective for SPT when the data contains overlapping PSFs and provides unprecedented information about KRAS4b subpopulations. spt-PRIS is helpful for a broad range of scientific studies where precise and fast high-density localization is beneficial. spt-PRIS is also flexible for extensions for multi-species, multi-multi-channel, and multi-dimensional SPT methods with the generalization of PRIS reconstruction schemes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3