Membrane-Localized Mutations Predict the Efficacy of Cancer Immunotherapy

Author:

Briquez Priscilla S.,Hauert Sylvie,Goldberger Zoe,Kurtanich Trevin,Alpar Aaron T.,Repond Grégoire,Wang Yue,Gomes Suzana,Siddarth Prabha,Swartz Melody A.,Hubbell Jeffrey A.

Abstract

ABSTRACTDue to their genetic instability, tumor cells bear mutations that can effectively be recognized by the immune system. In the clinic, immune checkpoint immunotherapy (ICI) can re-activate immune reactions against mutated proteins, known as neoantigens, leading to remarkable remission in cancer patients. Nevertheless, only a minority of patients are responsive to ICI, and approaches for prediction of responsiveness remain elusive yet are needed to improve the success of cancer treatments. While the tumor mutational burden (TMB) correlates positively with responsiveness and survival of patients undergoing ICI therapy, the influence of the subcellular localizations of the mutated proteins within the tumor cell has not been elucidated. Here, we hypothesized that the immune reactions are modulated by the localization of the mutated proteins and, therefore, that some subcellular localizations could favor responsiveness to ICI. We show in both a mouse melanoma model and human clinical datasets of 1722 ICI-treated patients that high membrane-localized tumor mutational burden (mTMB), particularly at the plasma membrane, correlate with responsiveness to ICI therapy and improved overall survival across multiple cancer types. We further highlight that mutations in the genes encoding for the membrane proteins NOTCH3, RNF43, NTRK3 and NOTCH1, among others, may serve as potent biomarkers to predict extended survival upon ICI in certain cancer types. We anticipate that our results will improve the predictability of cancer patient response to ICI and therefore may have important implications to establish future clinical guidelines to direct the choice of treatment toward ICI.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3