Response of Wastewater-Based Epidemiology Predictor for the Second Wave of COVID-19 in Ahmedabad, India: A Long-term Data Perspective

Author:

Kumar Manish,Joshi MadhviORCID,Jiang Guangming,Yamada Rintaro,Honda RyoORCID,Srivastava Vaibhav,Mahlknecht Jürgen,Barcelo Damia,Chidambram Sabarathinam,Khursheed Anwar,Graham David,Joshi Chaitanya

Abstract

ABSTRACTWastewater-based epidemiology (WBE) monitoring can play a key role in managing future pandemics because it covers both pre-symptomatic and asymptomatic cases, especially in densely populated areas with limited community health care. In the present work, wastewater monitoring was employed in Ahmedabad, India, after the successful containment of the first wave of COVID-19 to predict resurgence of the disease in the expected second wave of the pandemic. Here we show wastewater levels of COVID-19 virus particles (i.e., SARS-CoV-2) positively correlated with the number of confirmed clinical cases during the first wave, and provided early detection of COVID-19 presence before the second wave in Ahmedabad and an WBE-based city zonation plan was developed for health protection. A eight-month data of Surveillance of Wastewater for Early Epidemic Prediction (SWEEP) was gathered, including weekly SARS-CoV-2 RNA wastewater analysis (n=287) from nine locations between September 2020 and April 2021. Across this period, 258 out of 287 samples were positive for least two out of three SARS-CoV-2 genes (N, ORF 1ab, and S). Monitoring showed a substantial decline in all three gene markers between October and September 2020, followed by an abrupt increase in November 2020. Similar changes were seen in March 2021, which preceded the second COVID-19 wave. Measured wastewater ORF-1ab gene copies ranged from 6.1 × 102 (October, 2020) to 1.4 × 104 (November, 2020) copies/mL, and wastewater gene levels typically lead confirmed cases by one to two weeks. The study highlights the value of WBE as a monitoring tool to predict waves within a pandemic, identifying local disease hotspots within a city and guiding rapid management interventions.HighlightsEight-months of SARS-CoV-2 gene variations explicitly predicts 2nd COVID-19 wave.258 out of 287 wastewater samples were positive for SARS-CoV-2 genes.WBE offers a lead time of 1-2 weeks relative to clinical cases.Model suggests that ORF 1ab gene is the most effective as a marker gene in WBE study.WBE RT-PCR screening for pathogens should be mandatory for global health monitoring.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wastewater Surveillance for Public Health: Beyond the Pandemic;Journal of Science Policy & Governance;2022-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3