Genomic insights into the adaptive and convergent evolution of Leuciscus waleckii inhabiting extremely alkaline environments

Author:

Zhou ZhixiongORCID,Yang Junyi,Lv Hongzao,Zhou Tao,Zhao Ji,Bai Huaqiang,Pu Fei,Xu PengORCID

Abstract

AbstractLeuciscus waleckii is widely distributed in Northeast Asia and has high economic value. Different from its freshwater counterparts, the population in Lake Dali Nur has a strong alkalinity tolerance and can adapt to extremely alkaline–saline water with bicarbonate over 50 mmol/L (pH 9.6), thus providing an exceptional model with which to explore the mechanisms of adaptive evolution under extreme alkaline environments. Here, we assembled a high quilty chromosome-level reference genome for L. waleckii from Lake Dali Nur, which provides an important genomic resource for the exploitation of alkaline water fishery resources and adaptive evolution research across teleost fish. Notably, we identified significantly expanded long terminal repeats (LTRs) and long interspersed nuclear elements (LINEs) in L. waleckii compared to other Cypriniformes fish, suggesting their more recent insertion into the L. waleckii genome. We also identified expansions in genes encoding gamma-glutamyltransferase, which possibly underlie the adaptation to extreme environmental stress. Based on the resequencing of 85 L.waleckii individuals from divergent populations, the historical population size of L.waleckii in Lake Dali Nur dramatically expanded in a thousand years approximately 13,000 years ago, and experienced a cliff recession in the process of adapting to the alkaline environment of Lake Dali Nur approximately 6,000 years ago. Genome scans further revealed the significant selective sweep regions from Lake Dali Nur, which harbour a set of candidate genes involved in hypoxia tolerance, ion transport, acid-base regulation and nitrogen metabolism. In particular, 5 alkali population specific nonsynonymous mutations were identified in CA15 gene copies. In addition, two sites with convergent amino acid mutation were detected in the RHCG-a gene among several alkali environment adapted Cypriniformes fish, this mutation may increase the NH3 excretion rate of the RHCG channel. Our findings provide comprehensive insight into the genomic mechanisms of L. waleckii and reveal their adaptative evolution under extreme alkaline environments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3