Semi-field evaluation of the space spray efficacy of Fludora Co-Max EW against wild insecticide-resistant Aedes aegypti and Culex quinquefasciatus mosquito populations from Abidjan, Côte d’Ivoire

Author:

Zahouli Julien Z. B.ORCID,Dibo Jean-Denis,Diakaridia Fofana,Yao Laurence,Souza Sarah D.,Horstmann Sebastian,Koudou Benjamin G.

Abstract

AbstractBackgroundSpace spraying of insecticides is still an important mean of controlling Aedes and Culex mosquitoes and arboviral diseases. This study evaluated the space spray efficacy of Fludora Co-Max EW (a combination of flupyradifurone and transfluthrin, with Film Forming Aqueous Spray Technology (FFAST)) against wild, insecticide-resistant Aedes aegypti and Culex quinquefasciatus populations from Abidjan, Côte d’Ivoire, against K-Othrine EC (deltamethrin-only product), through small-scale field trials.MethodologyWild Ae. aegypti and Cx. quinquefasciatus mosquito larvae were collected in Abidjan, Côte d’Ivoire from August to December 2020. Mosquito larvae were reared until adult stage. Emerged adult females were tested against Fludora Co-Max EW and K-Othrine EC using ultra-low volume cold fogging (ULV) and thermal fogging (TF) both outdoors and indoors in Agboville, Côte d’Ivoire. Cages containing 20 mosquitoes each were placed at 10, 25, 50, 75 and 100 m from the spraying line for outdoor spraying, and at ceiling, mid-height and floor levels for indoor house spraying. Knockdown and mortality were recorded at each checkpoint and compared by treatments.Principal findingsOverall, Fludora Co-Max EW induced significantly higher knockdown and mortality effects in the wild insecticide-resistant Ae. aegypti and Cx. quinquefasciatus compared with K-Othrine EC. With both species, Fludora Co-Max EW mortality rates were above 80% (up to 100%) for outdoor ULV spray at each distance checkpoint (i.e. 10 to 100 m), and 100% for indoor ULV and TF sprays at all level checkpoints (i.e. ceiling, mid-height and floor). K-Othrine EC induced high mortality indoors (97.9-100%), whereas outdoor mortality rapidly declined in Ae. aegypti from 96.7% to 36.7% with ULV, and 85.0% to 38.3% with TF, from 10 to 100 m. For outdoor Fludora Co-Max EW spray, ULV showed both higher knockdown and killing performance Ae. aegypti and Cx. quinquefasciatus compared with TF. Fludora Co-Max EW performed better against Cx. quinquefasciatus compared with Ae. aegypti.Conclusion/significanceFludora Co-Max EW induced high mortality and knockdown effects against wild insecticide-resistant Ae. aegypti and Cx. quinquefasciatus Abidjan strains and performed better than K-Othrine EC. The presence of flupyradifurone and transfluthrin (with new and independent modes of action) and FFAST technology in the current Fludora Co-Max EW formulation appears to have broadened its killing capacity. Fludora Co-Max EW is thus an effective adulticide and may be a useful tool for Aedes and Culex mosquito and arbovirus control in endemic areas.Author SummarySpace spraying of insecticides is an important tool to control Aedes and Culex mosquitoes and prevent the viral diseases (i.e. dengue, yellow fever, etc.) that they transmit. We studied the efficacy of the product Fludora Co-Max EW (a new space spray insecticide) against adult wild insecticide-resistant populations of Aedes aegypti and Culex quinquefasciatus mosquitoes from Abidjan, Côte d’Ivoire. We compared Fludora Co-Max EW knockdown and mortality effects in these mosquitoes with the local insecticide K-Othrine EC using ultra-low volume (ULV) and thermal fogging (TF) spraying outdoors and indoors. The product Fludora Co-Max EW induced high rates of knockdown and mortality (i.e. 80-100%) in these wild insecticide-resistant mosquitoes and performed better than the product K-Othrine EC. Additionally, ULV sprays of Fludora Co-Max EW demonstrated higher knockdown and killing efficacy at larger distances (i.e. up to 100 m) compared with TF. The higher efficacy of Fludora Co-Max EW may be due to the interaction of two unrelated insecticides, flupyradifurone and transfluthrin, in combination with Film Forming Aqueous Spray Technology (FFAST). Fludora Co-Max EW therefore appears to be an effective and useful tool to control adult populations of wild insecticide-resistant Aedes and Culex mosquitoes and may be recommended for preventing related mosquito-transmitted viral diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3