Handedness is associated with less common input to spinal motor neurons innervating different hand muscles

Author:

Maillet Jean,Avrillon Simon,Nordez Antoine,Rossi Jeremy,Hug FrançoisORCID

Abstract

AbstractWhether the neural control of manual behaviours differs between the dominant and non-dominant hand is poorly understood. This study aimed to determine whether the level of common synaptic input to motor neurons innervating the same or different muscles differs between the dominant and the non-dominant hand. Seventeen participants performed two motor tasks with distinct mechanical requirements: an isometric pinch and an isometric rotation of a pinched dial. Each task was performed at 30% of maximum effort and was repeated with the dominant and non-dominant hand. Motor units were identified from two intrinsic (flexor digitorum interosseous and thenar) and one extrinsic muscle (flexor digitorum superficialis) from high-density surface electromyography recordings. Two complementary approaches were used to estimate common synaptic inputs. First, we calculated the coherence between groups of motor neurons from the same and from different muscles. Then, we estimated the common input for all pairs of motor neurons by correlating the low-frequency oscillations of their discharge rate. Both analyses led to the same conclusion, indicating less common synaptic input between motor neurons innervating different muscles in the dominant hand than in the non-dominant hand, which was only observed during the isometric rotation task. No differences in common input were observed between motor neurons of the same muscle. This lower level of common input could confer higher flexibility in the recruitment of motor units, and therefore, in mechanical outputs. Whether this difference between the dominant and non-dominant arm is the cause or the consequence of handedness remains to be determined.Key points-How the neural control of manual behaviours differs between the dominant and non-dominant hand remains poorly understood.-We decoded the spiking activities of spinal motor neurons innervating one extrinsic and two intrinsic hand muscles during isometric tasks.-We estimated the common synaptic input to motor neurons innervating the same or different muscles.-There is less common synaptic input between motor neurons innervating different muscles in the dominant than in the non-dominant hand during isometric rotation tasks.-No differences in common input were observed between motor neurons of the same muscle.-Lower level of common input could confer higher flexibility in the recruitment of motor units.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3