Bayesian species distribution models integrate presence-only and presence-absence data to predict deer distribution and relative abundance

Author:

Morera-Pujol VirginiaORCID,Mostert Philip S.ORCID,Murphy KilianORCID,Burkitt Tim,Coad Barry,McMahon Barry J.ORCID,Nieuwenhuis MaartenORCID,Morelle KevinORCID,Ward AlastairORCID,Ciuti SimoneORCID

Abstract

AbstractThe use of georeferenced information on the presence of a species to predict its distribution across a geographic area is one of the most common tools in management and conservation. The collection of high-quality presence-absence data through structured surveys is, however, expensive, and managers usually have more abundant low-quality presence-only data collected by citizen scientists, opportunistic observations, and culling returns for game species. Integrated Species Distribution Models (ISDMs) have been developed to make the most of the data available by combining the higher-quality, but usually less abundant and more spatially restricted presence-absence data, with the lower quality, unstructured, but usually more extensive and abundant presence-only data. Joint-likelihood ISDMs can be run in a Bayesian context using INLA (Integrated Nested Laplace Approximation) methods that allow the addition of a spatially structured random effect to account for data spatial autocorrelation. These models, however, have only been applied to simulated data so far. Here, for the first time, we apply this approach to empirical data, using presence-absence and presence-only data for the three main deer species in Ireland: red, fallow and sika deer. We collated all deer data available for the past 15 years and fitted models predicting distribution and relative abundance at a 25 km2 resolution across the island. Models’ predictions were associated to spatial estimate of uncertainty, allowing us to assess the quality of the model and the effect that data scarcity has on the certainty of predictions. Furthermore, we validated the three species-specific models using independent deer hunting returns. Our work clearly demonstrates the applicability of spatially-explicit ISDMs to empirical data in a Bayesian context, providing a blueprint for managers to exploit unused and seemingly unusable data that can, when modelled with the proper tools, serve to inform management and conservation policies.

Publisher

Cold Spring Harbor Laboratory

Reference67 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3