Defining the HIV Capsid Binding Site of Nucleoporin 153

Author:

Li Shunji,Patel Jagdish SureshORCID,Yang Jordan,Crabtree Angela Marie,Rubenstein Brenda M.,Lund-Andersen Peik Karl,Ytreberg Frederick Marty,Rowley Paul AndrewORCID

Abstract

AbstractThe interaction between the HIV-1 capsid (CA) and human nucleoporin 153 (NUP153) is vital for delivering the HIV-1 preintegration complex into the nucleus via the nuclear pore complex. The interaction with CA requires a phenylalanine/glycine-containing motif in the C-terminus of NUP153. This study used molecular modeling and biochemical assays to determine the amino acids of NUP153 that are essential for its interactions with CA. Molecular dynamics, FoldX, and PyRosetta simulations delineated the minimal CA binding motif of NUP153 based on the known structure of NUP153 bound to the HIV-1 CA hexamer. Computational predictions were experimentally validated by testing the interaction of NUP153 with CA using an in vitro binding assay and a cell-based TRIM-NUP153C restriction assay. This multidisciplinary approach identified eight amino acids from P1411 to G1418 that stably engage with CA, with significant correlations between molecular models and empirical experiments. Specifically, P1411, V1414, F1415, T1416, F1417, and G1418 were confirmed as critical amino acids required to interact NUP153 with CA.IMPORTANCEHuman immunodeficiency virus (HIV) can infect non-dividing cells by interacting with host nuclear pores. The host nuclear pore protein NUP153 directly interacts with the HIV capsid to promote viral nuclear entry. This study used a multidisciplinary approach combining computational and experimental techniques to map the essential amino acids of NUP153 required for HIV capsid interaction. This approach revealed that the HIV capsid interacts specifically with only six amino acids of NUP153, suggesting other FG-containing motifs could also interact with the capsid. Based on molecular modeling, naturally occurring polymorphisms in human and non-human primates would be predicted to prevent NUP153 interaction with capsid, potentially protecting from HIV infection.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3