Microbiome assembly and maintenance across the lifespan of bumble bee workers

Author:

Hammer Tobin J.ORCID,Easton-Calabria AugustORCID,Moran Nancy A.ORCID

Abstract

AbstractHow a host’s microbiome changes over its lifespan can influence development and aging. As these temporal patterns have only been described in detail for humans and a handful of other hosts, an important next step is to compare microbiome dynamics across a broader array of host-microbe symbioses, and to investigate how and why they vary. Here we characterize the temporal dynamics and stability of the bumblebee worker gut microbiome. Bumblebees are a useful symbiosis model given their relatively well-understood life history and simple, host-specific gut bacterial communities. Furthermore, microbial dynamics may influence bumblebee health and pollination services. We combined high-temporal-resolution sampling with 16S rRNA gene sequencing, quantitative PCR, and shotgun metagenomics to characterize gut microbiomes over the adult lifespan of Bombus impatiens workers. To understand how hosts may control (or lose control of) the gut microbiome as they age, we also sequenced hindgut transcriptomes. We found that, at the community level, microbiome assembly is highly predictable and similar to patterns of primary succession observed in the human gut. At the same time, partitioning of strain-level bacterial variants among colonies suggests stochastic colonization events similar to those observed in flies and nematodes. We also find strong differences in temporal dynamics among symbiont species, suggesting ecological differences among microbiome members in colonization and persistence. Finally, we show that both the gut microbiome and host transcriptome—including expression of key immunity genes—stabilize, as opposed to senesce, with age. We suggest that in highly social groups such as bumblebees, maintenance of both microbiomes and immunity contribute to the inclusive fitness of workers, and thus remain under selection even in old age. Our findings provide a foundation for exploring the mechanisms and functional outcomes of bee microbiome succession, and for comparative analyses with other host-microbe symbioses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3