Design of an ultrafast pulsed ponderomotive phase plate for cryo-electron tomography

Author:

Du Daniel X.,Fitzpatrick Anthony W. P.ORCID

Abstract

AbstractPonderomotive phase plates have shown temporally consistent phase contrast is possible within electron microscopes via high fluence static laser modes resonating in Fabry-Perot cavities. Here, we explore using pulsed laser beams as an alternative method of generating high fluences. We find through forward-stepping finite element models that picosecond-or-less interactions are required for meaningful fluences phase shifts, with higher pulse energies and smaller beam waists leading to the predicted higher fluences. An additional model based on quasiclassical assumptions is used to discover the shape of the phase plate by incorporating the oscillatory nature of the electric field. From these results, we find the transient nature of the laser pulses removes the influence of Kapitza-Dirac diffraction patterns that appear in the static resonator cases. The addition of a second laser aligned 90° to the first induces anisotropy to the shape of the phase plate. By incorporating a shifting-electron-beam algorithm, the effects of a finite electron beam crossover are also simulated. A total pulse energy of 8.7 μJ is enough to induce the required π/2 phase shift for Zernike-like phase microscopy. As a brief thought experiment, we also explore the usage of high frequency lasers in a standard electron emission scheme to see if a pulsed electron beam is even necessary. Ultimately, frequency requirements limit the laser to nanosecond pulse durations, causing the required pulse energies to reach unreasonable levels before adequate phase shifts are achieved.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3