Post-injury hydraulic fracturing drives fissure formation in the zebrafish basal epidermal cell layer

Author:

Kennard Andrew S.ORCID,Sathe MugdhaORCID,Labuz Ellen C.ORCID,Prinz Christopher K.ORCID,Theriot Julie A.ORCID

Abstract

SummaryThe skin epithelium acts as the barrier between an organism’s internal and external environments. In zebrafish and other freshwater organisms, this barrier function requires withstanding a large osmotic pressure differential. Wounds breach this epithelium, causing a large disruption to the tissue microenvironment due to the mixing of isotonic interstitial fluid with the external hypotonic fresh water. Here we show that, following acute injury, the larval zebrafish epidermis undergoes a dramatic fissuring process that resembles hydraulic fracturing, driven by the influx of external fluid. The fissuring starts in the basal epidermal layer nearest to the wound, and then propagates at a constant rate through the tissue spanning over one hundred micrometers; during this process the outermost superficial epidermal layer remains intact. Fissuring is completely inhibited when larvae are wounded in an isotonic external media, suggesting that osmotic pressure gradients drive fissure. Additionally, fissuring partially depends on myosin II activity, as its inhibition reduces fissure propagation away from the wound. During and after fissuring, the basal layer forms large macropinosomes (with cross-sectional areas ranging from 1-10 µm2), presumably to clear the excess fluid. We conclude that excess external fluid entry through the wound and subsequent closure of the wound through actomyosin purse string contraction in the superficial cell layer causes fluid pressure buildup in the extracellular space of the zebrafish epidermis. This excess fluid pressure causes tissue to fissure, and eventually the fluid is cleared through macropinocytosis.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3