Using Shape Fluctuations to Probe the Mechanics of Stress Granules

Author:

Law Jack O.ORCID,Jones Carl M.,Stevenson ThomasORCID,Turner Matthew S.ORCID,Kusumaatmaja HalimORCID,Grellscheid Sushma N.ORCID

Abstract

AbstractSurface tension plays a significant role in many functions of biomolecular condensates, from governing the dynamics of droplet coalescence to determining how condensates interact with and deform lipid membranes and biological filaments. To date, however, there is a lack of accurate methods to measure the surface tension of condensates in living cells. Here, we present a high-throughput flicker spectroscopy technique that is able to analyse the thermal fluctuations of the surfaces of tens of thousands of condensates to extract the distribution of surface tensions. Demonstrating this approach on stress granules, we show for the first time that the measured fluctuation spectra cannot be explained by surface tension alone. It is necessary to include an additional energy contribution, which we attribute to an elastic bending rigidity and suggests the presence of structure at the granule-cytoplasm interface. Our data also show that stress granules do not have a spherical base-shape, but fluctuate around a more irregular geometry. Taken together, these results demonstrate quantitatively that the mechanics of stress granules clearly deviate from those expected for simple liquid droplets.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3