A Hierarchical Bayesian Model for Cyber-Human Assessment of Rehabilitation Movement

Author:

Ahmed Tamim,Rikakis Thanassis,Zilevu Setor,Kelliher Aisling,Thopalli Kowshik,Turaga Pavan,Wolf Steven L.

Abstract

AbstractBackgroundThe evidence-based quantification of the relation between changes in movement quality and functionality can assist clinicians in achieving more effective structuring or adaptations of therapy. Facilitating this quantification through computational tools can also result in the generation of large-scale data sets that can inform automated assessment of rehabilitation. Interpretable automated assessment can leave more time for clinicians to focus on treatment and allow for remotely supervised therapy at the home.MethodsIn our first experiment, we developed a rating process and accompanying computational tool to assist clinicians in following a standardized movement assessment process relating functionality to movement quality. We conducted three studies with three different versions of the computational rating tool. Clinicians rated task, segment, and movement feature performance for 440 videos in which stroke survivors executed standardized upper extremity therapy tasks related to functional activities. In our second experiment, we used the 440 rated videos, in addition to 140 videos of unimpaired subjects performing the same tasks, to improve our previously developed automated assessment ensemble model that automatically generates segmentation times and task ratings across impaired and unimpaired movement. The automated assessment ensemble integrates expert knowledge constraints into data driven training though a combination of HMM, transformer, MSTCN++, and decision tree computational modules. In our third experiment, we used the therapist and automated ratings to develop a four-layer Hierarchical Bayesian Model (HBM) for computing the statistical relation of movement quality changes to functionality. We first calculated conditional layer probabilities using clinician ratings of task, segment, and movement features. We increased the granularity of observation of the HBM by formulating ΔHBM, a correlation graph between kinematics and movement composite features. Finally, we used k-means clustering on the ΔHBM to identify three clusters of features among the 16 movement composite and 20 kinematic features and used the centroid of these clusters as the weights of the input data to our computational assessment ensemble.ResultsWe evaluated the efficacy of our rating interface in terms of inter-rater reliability (IRR) across tasks, segments, and movement features. The third version of the interface produced an average IRR of 67%, while the time per session (TPS) was the lowest of the three studies. By analyzing the ratings, we were able to identify a small number of movement features that have the highest probability of predicting functional improvement. We evaluated the performance of our automated assessment model using 60% impaired and 40% unimpaired movement data and achieved a frame-wise segmentation accuracy of 87.85±0.58 and a block-segmentation accuracy of 98.46±1.6. We also demonstrated the performance of our proposed HBM in correlation to clinician’s ratings with a correlation over 90%. The HBM also generates a correlation graph, ΔHBM that relates 16 composite movement features to the 20 kinematic features. We can thus integrate the HBM into the computational assessment ensemble to perform automated and integrated movement quality and functionality assessment that is driven by computationally extracted kinematics.ConclusionsCombining standardized clinician ratings of videos with knowledge based and data driven computational analysis of rehabilitation movement allows the expression of an HBM that increases the observability of the relation of movement quality to functionality and enables the training of computational algorithms for automated assessment of rehabilitation movement. While our work primarily focuses on the upper extremity of stroke survivors, the models can be adopted to many other neurorehabilitation contexts.

Publisher

Cold Spring Harbor Laboratory

Reference34 articles.

1. Principles of Experience-Dependent Neural Plasticity: Implications for Rehabilitation After Brain Damage

2. A Computational Framework for Quantitative Evaluation of Movement during Rehabilitation

3. Improvement of Arm Movement Patterns and Endpoint Control Depends on Type of Feedback During Practice in Stroke Survivors

4. Elastic functional coding of riemannian trajectories;IEEE transactions on pattern analysis and machine intelligence,2016

5. Kelliher, A. , Byrne, D. : Research through design, documentation, annotation, and curation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3