Insights into Long-term Acclimation Strategies of Grapevines in Response to Multi-decadal Cyclical Drought

Author:

Nagahatenna Dilrukshi S. K.ORCID,Furlan Tarita S.,Edwards Everard J.,Ramesh Sunita A.,Pagay VinayORCID

Abstract

AbstractThe Australian wine industry is currently under pressure to sustain its profitability due to climate change. Therefore, there is a pressing need to explore grapevine genetic diversity and identify superior clones with improved drought resistance. We previously characterised more than 15,000 dry-farmed (for over 65 years) Cabernet Sauvignon clones in a vineyard and identified three drought-tolerant (DT) clones, which can maintain significantly higher intrinsic water use efficiency (WUEi) under limited soil moisture than drought-sensitive (DS) clones. To understand whether DT clones grown under multi-decadal cyclical drought can prime their vegetatively-propagated clonal progenies for future drought events, in this study, all DT and DS vegetative progenies were propagated with commercial clones in the glasshouse. Their physiological and molecular responses were investigated under well-watered and two recurrent drought (D1 and D2) conditions. We observed that concentration of a natural priming agent, γ-amino butyric acid (GABA), were significantly higher in all DT progenies relative to other progenies under drought. Both commercial and DT progenies exhibited improved gas exchange, photosynthetic performance and WUEi under recurrent drought events relative to DS progenies. Our results suggest that DT progenies have adapted to be in a “primed state” to withstand future drought events.

Publisher

Cold Spring Harbor Laboratory

Reference70 articles.

1. Report, W.A. Economic Contribution of the Australian Wine Sector 2019; Wine Australia: 2019.

2. Report, N.V. National Vintage report 2020_WA. 2020.

3. IPCC. Climate change 2021 the physical science basis; 7/08/2021 2021.

4. Nicholas, P. Grapevine clones used in Australia; South Australian Research and Development Institute: 2006.

5. Linear models enable powerful differential activity analysis in massively parallel reporter assays

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3