The Scar/WAVE complex drives normal actin protrusions without the Arp2/3 complex, but proline-rich domains are required

Author:

Buracco SimonaORCID,Singh Shashi,Claydon Sophie,Paschke Peggy,Tweedy Luke,Whitelaw Jamie,McGarry Lynn,Thomason Peter A.,Insall Robert H.ORCID

Abstract

AbstractCell migration requires the constant modification of cellular shape by reorganization of the actin cytoskeleton. The pentameric Scar/WAVE regulatory complex (WRC) is the main catalyst of pseudopod and lamellipodium formation. Its actin nucleation activity has been attributed to its ability to combine monomeric actin and Arp2/3 complex through the VCA domain of Scar/WAVE, while other regions of the complex are typically thought to mediate spatial and temporal regulation and have no direct role in actin polymerization.Here we show that the Scar/WAVE with its VCA domain deleted can still induce the formation of morphologically normal actin protrusions. Equivalent results are seen in B16-F1 mouse melanoma cells and Dictyostelium discoideum cells. This actin polymerization occurs independently of the Arp2/3 complex, whose recruitment to the leading edge is greatly reduced by the loss of the VCA domain. We also expressed Scar/WAVE with VCA and polyproline domains both deleted. In Dictyostelium cells, these were only active if WASP (which contains its own proline-rich domain) was available. Similarly, in B16-F1 cells both Abi and WAVE proline-rich domains needed to be deleted before the function of the WRC was lost. Thus we conclude that proline-rich domains play a central role in actin nucleation.Our data demonstrate a new actin nucleation mechanism of the WRC that is independent of its VCA domain and the Arp2/3 complex. We also show that proline-rich domains are more fundamental than has been thought. Together, these findings suggest a new mechanism for WRC action.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3