Notch signaling functions in non-canonical juxtacrine manner in platelets to amplify thrombogenicity

Author:

Chaurasia Susheel N.,Ekhlak Mohammad,Kushwaha Geeta,Singh Vipin,Mallick Ram L.,Dash DebabrataORCID

Abstract

ABSTRACTBackgroundNotch signaling is an evolutionarily conserved pathway that dictates cell fate decisions in mammalian cells including megakaryocytes. Existence of functional Notch signaling in enucleate platelets that are generated as cytoplasmic buds from megakaryocytes still remains elusive.MethodsPlatelets were isolated from human blood by differential centrifugation under informed consent. Expression of transcripts as well as peptides of Notch1 and DLL-4 in platelets was studied by employing RT-qPCR, Western analysis and flow cytometry. Platelet activation responses that include aggregation, secretion of granule contents and platelet-leucocyte interaction were analyzed by Born’s aggregometry, flow cytometry, Western analysis and lumi- aggregometry. Shedding of extracellular vesicles from platelets was documented with Nanoparticle Tracking Analyzer. Platelet adhesion and thrombus growth on immobilized matrix was quantified by employing microfluidics platform. Intracellular free calcium in Fura-2-loaded platelets was monitored from ratiometric fluorescence spectrophotometry. Coagulation parameters in whole blood were studied by thromboelastography. Ferric chloride-induced mesenteric arteriolar thrombosis in murine model was imaged by intravital microscopy.ResultsHere we demonstrate significant expression of Notch1 and its ligand, the Delta-like ligand (DLL)- 4, as well as their respective transcripts, in human platelets. Synthesis and surface translocation of Notch1 and DLL-4 were upregulated when cells were challenged with physiological agonists like thrombin. DLL-4, in turn, instigated neighbouring platelets to switch to ‘activated’ phenotype, associated with cleavage of Notch receptor and generation of its intracellular domain (NICD). DLL-4-mediated pro-thrombotic attributes were averted by pharmacological inhibition of γ-secretase and phosphatidylinositol 3-kinase. Inhibition of Notch signaling, too, restrained agonist-induced platelet activation, and significantly impaired arterial thrombosis in mice, suggestive of synergism between thrombin- and DLL-4-mediated pathways. Strikingly, prevention of DLL-4-Notch1 interaction by a blocking antibody abolished platelet aggregation and extracellular vesicle shedding induced by thrombin.ConclusionsOur study presents compelling evidence in support of non-canonical Notch signaling that propagates in juxtacrine manner within platelet aggregates and synergizes with physiological agonists to generate occlusive intramural thrombi. Thus, targeting Notch signaling can be investigated as a potential anti-platelet/anti-thrombotic therapeutic approach.FundingThis research was supported by J. C. Bose National Fellowship (JCB/2017/000029) and grants received by D. Dash from the Indian Council of Medical Research (ICMR) under CAR (71/4/2018-BMS/CAR), Department of Biotechnology (DBT) (BT/PR-20645/BRB/10/1541/2016) and Science and Engineering Research Board (SERB) (EMR/2015/000583), Government of India. S.N. Chaurasia is a recipient of financial assistance from the ICMR. M. Ekhlak is a recipient of CSIR-SRF and V. Singh is a recipient of UGC-SRF. D. Dash acknowledges assistance from the Humboldt Foundation, Germany. Funders have no role in the design, analysis and reporting of the study.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3