Abstract
ABSTRACTBackgroundNotch signaling is an evolutionarily conserved pathway that dictates cell fate decisions in mammalian cells including megakaryocytes. Existence of functional Notch signaling in enucleate platelets that are generated as cytoplasmic buds from megakaryocytes still remains elusive.MethodsPlatelets were isolated from human blood by differential centrifugation under informed consent. Expression of transcripts as well as peptides of Notch1 and DLL-4 in platelets was studied by employing RT-qPCR, Western analysis and flow cytometry. Platelet activation responses that include aggregation, secretion of granule contents and platelet-leucocyte interaction were analyzed by Born’s aggregometry, flow cytometry, Western analysis and lumi- aggregometry. Shedding of extracellular vesicles from platelets was documented with Nanoparticle Tracking Analyzer. Platelet adhesion and thrombus growth on immobilized matrix was quantified by employing microfluidics platform. Intracellular free calcium in Fura-2-loaded platelets was monitored from ratiometric fluorescence spectrophotometry. Coagulation parameters in whole blood were studied by thromboelastography. Ferric chloride-induced mesenteric arteriolar thrombosis in murine model was imaged by intravital microscopy.ResultsHere we demonstrate significant expression of Notch1 and its ligand, the Delta-like ligand (DLL)- 4, as well as their respective transcripts, in human platelets. Synthesis and surface translocation of Notch1 and DLL-4 were upregulated when cells were challenged with physiological agonists like thrombin. DLL-4, in turn, instigated neighbouring platelets to switch to ‘activated’ phenotype, associated with cleavage of Notch receptor and generation of its intracellular domain (NICD). DLL-4-mediated pro-thrombotic attributes were averted by pharmacological inhibition of γ-secretase and phosphatidylinositol 3-kinase. Inhibition of Notch signaling, too, restrained agonist-induced platelet activation, and significantly impaired arterial thrombosis in mice, suggestive of synergism between thrombin- and DLL-4-mediated pathways. Strikingly, prevention of DLL-4-Notch1 interaction by a blocking antibody abolished platelet aggregation and extracellular vesicle shedding induced by thrombin.ConclusionsOur study presents compelling evidence in support of non-canonical Notch signaling that propagates in juxtacrine manner within platelet aggregates and synergizes with physiological agonists to generate occlusive intramural thrombi. Thus, targeting Notch signaling can be investigated as a potential anti-platelet/anti-thrombotic therapeutic approach.FundingThis research was supported by J. C. Bose National Fellowship (JCB/2017/000029) and grants received by D. Dash from the Indian Council of Medical Research (ICMR) under CAR (71/4/2018-BMS/CAR), Department of Biotechnology (DBT) (BT/PR-20645/BRB/10/1541/2016) and Science and Engineering Research Board (SERB) (EMR/2015/000583), Government of India. S.N. Chaurasia is a recipient of financial assistance from the ICMR. M. Ekhlak is a recipient of CSIR-SRF and V. Singh is a recipient of UGC-SRF. D. Dash acknowledges assistance from the Humboldt Foundation, Germany. Funders have no role in the design, analysis and reporting of the study.
Publisher
Cold Spring Harbor Laboratory