Effects of microplastics mixed with natural particles onDaphnia magnapopulations

Author:

Schür ChristophORCID,Beck Joana,Lambert Scott,Scherer Christian,Oehlmann Jörg,Wagner MartinORCID

Abstract

AbstractThe toxicity of microplastics onDaphnia magnaas a key model for freshwater zooplankton is well described. While several studies predict population-level effects based on short-term, individual-level responses, only very few have validated these predictions experimentally. Thus, we exposedD. magnapopulations to irregular polystyrene microplastics and diatomite as natural particle (both ≤ 63 μm) over 50 days. We used mixtures of both particle types at fixed particle concentrations (50,000 mL-1) and recorded the effects on overall population size and structure, the size of the individual animals, and resting egg production. Particle exposure adversely affected the population density and structure, and induced resting egg production. The terminal population size was 28–42% lower in exposed compared to control populations. Interestingly, mixtures containing diatomite induced stronger effects than microplastics alone, highlighting that natural particles are notper seless toxic than microplastics. Our results demonstrate that an exposure to synthetic and natural particles has negative population-level effects on zooplankton. Understanding the mixture toxicity of microplastics and natural particles is important given that aquatic organisms will experience exposure to both. Just as for chemical pollutants, better knowledge of such joint effects is essential to fully understand the environmental impacts of complex particle mixtures.Environmental ImplicationsWhile microplastics are commonly considered hazardous based on individual-level effects, there is a dearth of information on how they affect populations. Since the latter is key for understanding the environmental impacts of microplastics, we investigated how particle exposures affect the population size and structure ofDaphnia magna. In addition, we used mixtures of microplastics and natural particles because neither occurs alone in nature and joint effects can be expected in an environmentally realistic scenario. We show that such mixtures adversely affect daphnid populations and highlight that population-level and mixture-toxicity designs are one important step towards more environmental realism in microplastics research.Graphical AbstractHighlightsDaphniapopulations exposed to mixtures of microplastics and diatomiteEffects on population density, structure, and resting egg productionDiatomite as natural particle more toxic than microplasticsParticle mixtures induce negative population-level effectsParticle mixtures represent more realistic exposure scenario

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3