Quantitative stable-isotope probing (qSIP) with metagenomics links microbial physiology and activity to soil moisture in Mediterranean-climate grassland ecosystems

Author:

Greenlon AlexORCID,Sieradzki EllaORCID,Zablocki OlivierORCID,Koch Benjamin J.ORCID,Foley Megan M.ORCID,Kimbrel Jeffrey A.ORCID,Hungate Bruce A.ORCID,Blazewicz Steven J.ORCID,Nuccio Erin E.ORCID,Sun Christine L.ORCID,Chew Aaron,Mancilla Cynthia-Jeanette,Sullivan Matthew B.ORCID,Firestone MaryORCID,Pett-Ridge JenniferORCID,Banfield Jillian F.ORCID

Abstract

AbstractThe growth and physiology of soil microorganisms, which play vital roles in biogeochemical cycling, are likely dependent on current and prior soil moisture levels. Here, we developed and applied a genome-resolved metagenomic implementation of quantitative stable isotope probing (qSIP) to an H218O labeling experiment to determine which microbial community members, and with what capacities, are growing under in situ conditions. qSIP enabled measurement of taxon-specific growth because isotopic incorporation into microbial DNA requires production of new genome copies. We studied three Mediterranean grassland soils across a rainfall gradient to evaluate the hypothesis that historic precipitation levels are an important factor controlling trait selection. We used qSIP-informed genome-resolved metagenomics to resolve an active subset of soil community members and identify the ecophysiological traits that characterize them. Higher year-round precipitation levels correlated with higher activity and growth rates of flagellar motile microorganisms. In addition to bacteria that were heavily isotopically labeled, we identified abundant isotope-labeled phages suggesting phage-induced cell lysis likely contributed to necromass production at all three sites. Further, there was a positive correlation between phage activity and the activity of putative phage hosts. Contrary to our expectations, the capabilities to decompose the diverse complex carbohydrates common in soil necromass or oxidize methanol and carbon monoxide were broadly distributed across active and inactive bacteria in all three soils, implying that these traits are not highly selected for by historical precipitation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3