Knockout of mitogen-activated protein kinase 3 causes barley root resistance against Fusarium graminearum

Author:

Basheer JasimORCID,Vadovič PavolORCID,Šamajová OlgaORCID,Melicher PavolORCID,Komis GeorgeORCID,Křenek PavelORCID,Králová MichaelaORCID,Pechan TiborORCID,Ovečka MiroslavORCID,Takáč TomášORCID,Šamaj JozefORCID

Abstract

AbstractThe roles of mitogen-activated protein kinases (MAPKs) in plant-fungal pathogenic interactions are less understood in crops. Here, microscopic, phenotyping, proteomic and biochemical analyses revealed that independent TALEN-based knockout lines of Hordeum vulgare MITOGEN-ACTIVATED PROTEIN KINASE 3 (HvMPK3 KO) were resistant against Fusarium graminearum infection. When co-cultured with roots of the HvMPK3 KO lines, F. graminearum hyphae were excluded to the extracellular space, the growth pattern of hyphae was considerably deregulated, mycelia development was less efficient and number of appressoria and their penetration potential were significantly reduced. Intracellular penetration of hyphae was preceded by the massive production of reactive oxygen species (ROS) in attacked cells of the wild type, but it was mitigated in the HvMPK3 KO lines. Suppression of ROS production in these lines coincided with the elevated abundances of catalase and ascorbate peroxidase. Moreover, differential proteomic analysis revealed downregulation of defense-related proteins in wild type, and the upregulation of peroxidases, lipid transfer proteins, and cysteine proteases in HvMPK3 KO lines after 24h of F. graminearum inoculation. Consistently with proteomic analysis, microscopic observations showed an enhanced suberin accumulation in roots of HvMPK3 KO lines, most likely contributing to the arrested infection by F. graminearum. These results suggest that TALEN-based knockout of HvMPK3 leads to the barley root resistance against Fusarium root rot.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3