Identification of a bile acid-binding transcription factor in Clostridioides difficile using chemical proteomics

Author:

Forster ER,Yang X,Hang HC,Shen AORCID

Abstract

AbstractClostridioides difficile is a Gram-positive anaerobic bacterium that is the leading cause of hospital-acquired gastroenteritis in the US. In the gut milieu, C. difficile encounters microbiota-derived bile acids capable of inhibiting its growth, which are thought to be a mechanism of colonization resistance. While the levels of certain bile acids in the gut correlate with susceptibility to C. difficile infection, their molecular targets in C. difficile remain unknown. In this study, we sought to use chemical proteomics to identify bile acid-interacting proteins in C. difficile. Using photoaffinity bile acid probes and chemical proteomics, we identified a previously uncharacterized MerR family protein, CD3583 (now BapR), as a putative bile acid-sensing transcription regulator. Our data indicate that BapR binds and is stabilized by lithocholic acid (LCA) in C. difficile. Although loss of BapR did not affect C. difficile’s sensitivity to LCA, ΔbapR cells elongated more in the presence of LCA compared to wild-type cells. Transcriptomics revealed that BapR regulates the expression of the gene clusters mdeA-cd3573 and cd0618-cd0616, and cwpV, with the expression of the mdeA-cd3573 locus being specifically de-repressed in the presence of LCA in a BapR-dependent manner. Electrophoretic mobility shift assays revealed that BapR directly binds to the mdeA promoter region. Since mdeA is involved in amino acid-related sulfur metabolism and the mdeA-cd3573 locus encodes putative transporters, we propose that BapR senses a gastrointestinal tract-specific small molecule, LCA, as an environmental cue for metabolic adaptation.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3