Morphogen gradient orchestrates pattern-preserving tissue morphogenesis via motility-driven (un)jamming

Author:

Pinheiro DianaORCID,Kardos Roland,Hannezo ÉdouardORCID,Heisenberg Carl-Philipp

Abstract

Embryo development requires both biochemical signalling generating patterns of cell fates and active mechanical forces driving tissue shape changes. Yet, how these fundamental processes are coordinated in space and time, and, especially, how tissue patterning is preserved despite the complex cellular flows occurring during morphogenesis, remains poorly understood. Here, we show that a Nodal/TGF-β morphogen gradient orchestrates pattern-preserving mesendoderm internalization movements during zebrafish gastrulation by triggering a motility-driven (un)jamming transition. We find that graded Nodal signalling, in addition to its highly conserved role in mesendoderm patterning, mechanically subdivides the tissue into a small fraction of highly protrusive leader cells able to locally unjam and thus autonomously internalize, and less protrusive followers, which remain jammed and need to be pulled inwards by the leaders. Using minimal particle-based simulations and experimental perturbations, we further show that this binary mechanical switch, when combined with Nodal-dependent preferential adhesion coupling leaders to followers, is critical for triggering collective and orderly mesendoderm internalization, thus preserving tissue patterning. This provides a simple, yet quantitative, theoretical framework for how a morphogen-encoded (un)jamming transition can bidirectionally couple tissue mechanics with patterning during complex three-dimensional morphogenesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3