Unifying model for three forms of contextual modulation including feedback input from higher visual areas

Author:

Di Santo SerenaORCID,Dipoppa Mario,Keller Andreas,Roth Morgane,Scanziani Massimo,Miller Kenneth D.

Abstract

AbstractNeural responses to a localized visual stimulus are modulated by the content of its surrounding. This phenomenon manifests in several forms of contextual modulation, including three interrelated properties of the visual cortex: surround suppression, inverse response and surround facilitation. We devise a unified biologically realistic circuit model accounting for all these phenomena and show that i) surround suppression in L2/3 is only partially due to the recruitment of lateral inhibition; ii) long-range feedback projections are necessary for inverse response and iii) the width of the response profile in the feedback layer determines inverse size tuning. The model predicts the modulations induced by silencing somatostatin-expressing cells or higher visual areas or changing the stimulus contrast. These predictions are consistent with the experimental observations when available and can be tested in existing setups otherwise. We then show the robustness of the identified mechanisms in a model with three interneuron subclasses, built to fit the classical responses and able to predict inverse size-tuning curves.HighlightsOne model explains three different types of contextual modulation: (classical) surround suppression, (inverse) response to ‘holes’ in full field drifting gratings and cross orientation surround facilitation.Feedback, feedforward and lateral inhibitory inputs contribute to classical surround suppression in L2/3 of mouse V1 in different amounts.Observed responses to ‘holes’ in full field drifting gratings require long-range feedback projections.Surround modulation to the response to ‘holes’ in full field drifting gratings requires an increase in the characteristic length scale of the spatial pattern of activity in higher visual areas.The mechanisms uncovered by an analytically tractable model are also at work in a cell-type specific model that predicts response to a ‘hole’ stimulus.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3