Abstract
ABSTRACTThe incorporation of novel information into the hippocampal network is likely be constrained by its innate architecture and internally generated activity patterns. However, the origin, organization, and consequences of such patterns remain poorly understood. Here, we show that hippocampal network dynamics are affected by sequential neurogenesis. We birthdated CA1 pyramidal neurons with in-utero electroporation over 4 embryonic days encompassing the peak of hippocampal neurogenesis, and compared their functional features in freely moving, adult mice. Neurons of the same birthdate displayed distinct connectivity, coactivity across brain states, and assembly dynamics. Same birthdate hippocampal neurons were topographically organized, in that anatomically clustered (<500µm) neurons exhibited overlapping spatial representations. Overall, the wiring and functional features of CA1 pyramidal neurons reflected a combination of birthdate and the rate of neurogenesis. These observations demonstrate that sequential neurogenesis in embryonic development shapes the preconfigured forms of adult network dynamics.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献