A Role for Steroid 5 alpha-reductase 1 in Vascular Remodelling During Endometrial Decidualisation

Author:

Shaw I.W.ORCID,Kirkwood P.M.ORCID,Rebourcet D.ORCID,Cousins F.L.ORCID,Ainslie R.J.ORCID,Livingstone D.E.W.ORCID,Smith L.B.ORCID,Saunders P.T.K.ORCID,Gibson D.A.ORCID

Abstract

AbstractDecidualisation is the hormone-dependent process of endometrial remodelling that is essential for fertility and reproductive health. It is characterised by dynamic changes in the endometrial stromal compartment including differentiation of fibroblasts, immune cell trafficking and vascular remodelling. Deficits in decidualisation are implicated in disorders of pregnancy such as implantation failure, intra-uterine growth restriction, and pre-eclampsia.Androgens are key regulators of decidualisation that promote optimal differentiation of stromal fibroblasts and activation of downstream signalling pathways required for endometrial remodelling. We have shown that androgen biosynthesis, via 5α-reductase-dependent production of dihydrotestosterone, is required for optimal decidualisation of human stromal fibroblasts in vitro, but whether this is required for decidualisation in vivo has not been tested.In the current study we used steroid 5α-reductase type 1 (SRD5A1) deficient mice (Srd5a1-/- mice) and a validated model of induced decidualisation to investigate the role of SRD5A1 and intracrine androgen signalling in endometrial decidualisation. We measured decidualisation response (weight/proportion), transcriptomic changes, and morphological and functional parameters of vascular development. These investigations revealed a striking effect of 5α-reductase deficiency on the decidualisation response. Furthermore, vessel permeability and transcriptional regulation of angiogenesis signalling pathways, particularly those that involved vascular endothelial growth factor (VEGF), were disrupted in the absence of 5α-reductase. In Srd5a1-/- mice, injection of dihydrotestosterone co-incident with decidualisation restored decidualisation responses, vessel permeability, and expression of angiogenesis genes to wild type levels.Androgen availability declines with age which may contribute to age-related risk of pregnancy disorders. These findings show that intracrine androgen signalling is required for optimal decidualisation in vivo and confirm a major role for androgens in the development of the vasculature during decidualisation through regulation of the VEGF pathway. These findings highlight new opportunities for improving age-related deficits in fertility and pregnancy health by targeting androgen-dependent signalling in the endometrium.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3